SNR Linear Motion : Ball screws

Industry

For almost a century, SNR has designed, developed and manufactured bearings to meet the most demanding of applications. In April 2008, SNR and the Japanese Group NTN joined forces.

As one the 3 largest companies in the manufacture of bearings, our group offers its customers added value in terms of service, quality and products.

The NTN-SNR Group is distinguished by its global presence and by its company-wide quality assurance system.

We have been active in linear ball rail systems since 1985 and our complete range, based on innovative, high-quality products, has developed significantly.

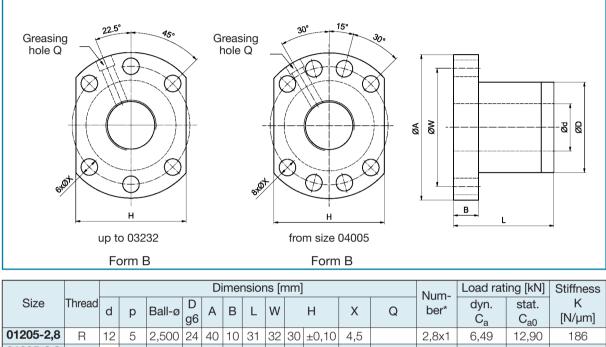
Today, we can offer a solution for a vast range of applications that need linear motion systems.

This catalogue aims to help you discover our new standard range of ball screw products in rolled and ground versions.

The large range of nuts, options for custom machining and our extensive technical knowledge enable us to design and propose custom-made solutions for our customers.

Ball rail systems find applications in a diverse range of industries such as machine tools for metal, wood, plastic, specialist machinery, aeronautics, automated assembly lines and semi-conductor industries.

Our technical department draws on many years of experience in all these areas and is available to help you develop solutions suited to your needs.


With that in mind, this technical documentation was designed as a basis for dialogue. Our technical and sales engineers will provide you with any technical information you may require.

SNR cannot be held responsible for consequences arising from any errors or omissions that may be contained in this documentation, although every care has been taken in its preparation. As part of our programme of continuous research and development, we reserve the right to make comprehensive or partial modifications to products and data appearing in this technical catalogue without prior notice.

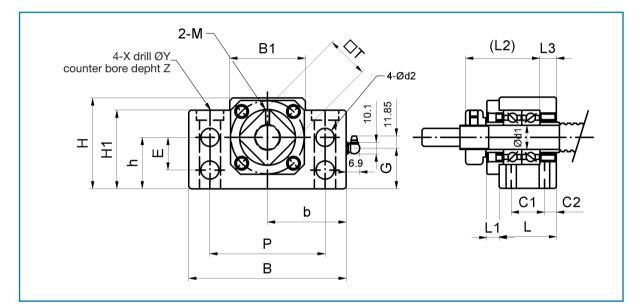
SNR Copyright International 2011

Type SC single compact flange nut to DIN 69051, for rolled screws

			-		g6										Ca	C_{a0}	[IN/µm]
01205-2,8	R	12	5	2,500	24	40	10	31	32	30	±0,10	4,5		2,8x1	6,49	12,90	186
01605-3,8	R		5	2,778	28	48	10	38	38	40	±0,15	5,5	M6x1P	3,8x1	10,90	24,59	294
01610-2,8	R		10	2,778	28	48	10	47	38	40	±0,15	5,5	M6x1P	2,8x1	8,23	17,86	226
01616-1,8	R	15	16	2,778	28	48	10	45	38	40	±0,15	5,5	M6x1P	1,8x1	5,42	11,15	137
01616-2,8	R		16	2,778	28	48	10	61	38	40	±0,15	5,5	M6x1P	2,8x1	7,92	17,34	216
01620-1,8	R		20	2,778	28	48	10	57	38	40	±0,15	5,5	M6x1P	1,8x1	5,43	11,47	137
02005-3,8	R		5	3,175	36	58	10	40	47	44	±0,15	6,6	M6x1P	3,8x1	15,55	36,10	363
02010-3,8	R	20	10	3,175	36	58	10	60	47	44	±0,15	6,6	M6x1P	3,8x1	14,87	37,59	392
02020-1,8	R	20	20	3,175	36	58	10	57	47	44	±0,15	6,6	M6x1P	1,8x1	7,96	17,24	186
02020-2,8	R		20	3,175	36	58	10	77	47	44	±0,15	6,6	M6x1P	2,8x1	10,96	26,81	284
02505-3,8	R		5	3,175	40	62	10	40	51	48	±0,15	6,6	M6x1P	3,8x1	16,18	45,68	422
02510-3,8	R	25	10	3,175	40	62	12	62	51	48	±0,15	6,6	M6x1P	3,8x1	16,06	45,43	441
02525-1,8	R	20	25	3,175	40	62	12	70	51	48	±0,15	6,6	M6x1P	1,8x1	8,26	21,57	2156
02525-2,8	R		25	3,175	40	62	12	95	51	48	±0,15	6,6	M6x1P	2,8x1	12,08	33,55	333
03205-3,8	R	32	5	3,175	50	80	12	42	65	62	±0,15	9,0	M6x1P	3,8x1	18,03	59,10	500
03210-3,8	R		10	3,969	50	80	13	62	65	62	±0,15	9,0	M6x1P	3,8x1	24,13	71,15	539
03220-2,8	R	31	20	3,969	50	80	12	80	65	62	±0,15	9,0	M6x1P	2,8x1	18,70	53,76	422
03232-1,8	R	51	32	3,969	50	80	13	84	65	62	±0,15	9,0	M6x1P	1,8x1	12,33	33,60	265
03232-2,8	R		32	3,969	50	80	13	116	65	62	±0,15	9,0	M6x1P	2,8x1	18,02	52,30	412
04005-3,8	R	40	5	3,175	63	93	15	45	78	70	±0,15	9,0	M8x1P	3,8x1	19,80	74,42	588
04010-3,8	R		10	6,350	63	93	14	63	78	70	±0,15	9,0	M8x1P	3,8x1	49,37	136,73	657
04020-2,8	R	38	20	6,350	63	93	14	82	78	70	±0,15	9,0	M8x1P	2,8x1	38,82	105,08	533
04040-1,8	R	50	40	6,350	63	93	15	105	78	70	±0,15	9,0	M8x1P	1,8x1	25,35	65,19	333
04040-2,8	R		40	6,350	63	93	15	145	78	70	±0,15	9,0	M8x1P	2,8x1	37,07	101,41	510
05005-3,8	R	50	5	3,175	75	110	15	45	93	85	±0,15	11,0	M8x1P	3,8x1	21,65	93,58	667
05010-3,8	R	48	10	6,350	75	110	18	68	93	85	±0,15	11,0	M8x1P	3,8x1	55,29	175,07	775
05020-3,8	R	40	50	6,350	75	110	18	108	93	85	±0,15	11,0	M8x1P	3,8x1	56,38	181,27	853

Ball nut sizes shown in bold are available ex stock.

* Number of circuits



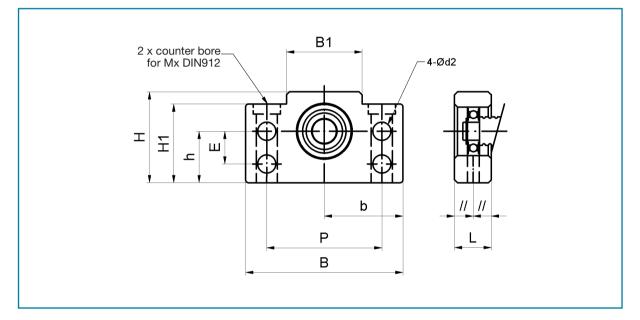
Fixed bearing unit BK

The fixed bearing unit consists of:

- Pillow block housing made of black oxided steel
- Two angular contact ball bearings
- Two seals with contact rings
- Slotted nut

Suitable for standard spindle ends type F1, F2 (see page 21)

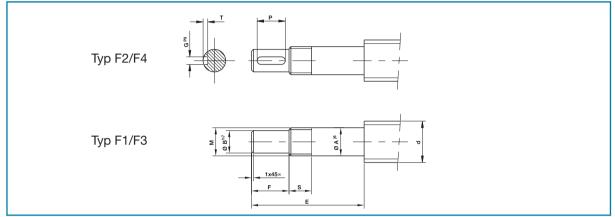
Unit	Spindle Nominal Dia- meter		d1	L	L1	L2	L3	В	Н	b ±0,02	h ±0,02	B1	H1	E	Ρ	C1	C2	d2	MX	М	т	G	Q	Weight [kg]
BK10	16	4/5	10	25	5	29	5	60	39	30	22	34	32,5	15	46	13	6	5,5	6	M3	16	15	M6	0,4
DICTO	14	2	10	25	5	23	5	00	09	50	22	54	52,5	13	40	13	0	5,5	0	1010	10	15	1010	0,4
BK12	16	10/ 16	12	25	5	29	5	60	43	30	25	3/	32,5	18	46	13	6	5.5	6	M4	19	18	M6	0,45
	20	4/5	12	20	5	23	5	00	40	50	20	54	52,5	10	40	13	0	5,5	0	1014	13	10	1010	0,43
BK15	20	10/20	15	27	6	32	6	70	48	35	28	40	38	18	54	15	6	5,5	6	M4	22	18	M6	0,69
BK17	25	5/ 10/ 25	17	35	9	44	7	86	64	43	39	50	55	28	68	19	8	6,6	8	M4	24	30	M6	1,3
BK20	32	10	20	35	8	43	8	88	60	44	34	52	50	22	70	19	8	6,6	8	M4	30	24	M6	1,3
BK25	32	4 / 5 / 20/ 32	25	42	12	54	9	106	80	53	48	64	70	33	85	22	10	9	10	M5	35	37	M6	2,4
BK30	40	5 /10 / 40	30	45	14	61	9	128	89	64	51	76	78	33	102	23	11	11	10	M6	40	37	M6	3,4
BK35	50	10 /20	35	50	14	67	12	140	96	70	52	88	79	35	114	26	12	11	12	M8	50	37	M6	4,4
BK40	50	50	40	61	18	76	15	160	110	80	60	100	90	37	130	33	14	14	16	M8	50	43	M6	6,8



Floating bearing unit BF

The floating bearing unit consists of:

- Bearing housing made of black oxided steel
- Deep grooved ball bearing
- Retaining ring


Suitable for standard spindle ends type S1 (see page 22)

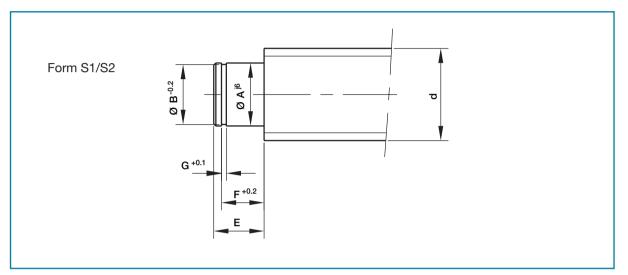
Unit	Spindle Nominal Dia- meter		d1	L	В	Н	b ±0,02	h ±0,02	B1	H1	E	Р	d2	Мx	Bearing	Safety ring DIN471	Weight [kg]
BF10	16	4/5	10	20	60	39	30	22	34	32,5	15	46	5,5	6	608ZZ	8x1	0,3
	14	2		20	00	03	30	22	54	52,5	15	40	5,5	0	00022	0.1	0,5
BF12	16	10/ 16	12	20	60	43	30	25	34	32,5	18	46	5.5	6	6000ZZ	10x1	0.35
DITZ	20	4/5	12	20	00	-0	50	20	94	02,0	10	40	5,5	0	000022	10/1	0,00
BF15	20	10 / 20	15	20	70	48	35	28	40	38	18	54	5,5	6	6002ZZ	15x1	0,4
BF17	25	5/ 10/ 25	17	23	86	64	43	39	50	55	28	68	6,6	8	6203ZZ	17x1	0,75
BF20	32	10	20	26	88	60	44	34	52	50	22	70	6,6	8	6004ZZ	20x1,2	0,77
BF25	32	4 / 5 / 20/ 32	25	30	106	80	53	48	64	70	33	85	9	10	6205ZZ	25x1,2	1,45
BF30	40	5 /10 / 40	30	32	128	89	64	51	76	78	33	102	11	12	6206ZZ	30x1,5	1,95
BF35	50	10 /20	35	32	140	96	70	52	88	79	35	114	11	12	6207ZZ	35x1,5	2,25
BF40	50	50	40	37	160	110	80	60	100	90	37	130	14	16	6208ZZ	40x1,75	3,3

Standard spindle ends

Machining for fixed bearings

Model F1/F2

	Spindle		a						Typ F2	(with cot	ter pin)	Recom-
Unit	Nominal Diameter	Pitch	ØA j6	ØB h7	E	F	М	S	G	Т	Ρ	mended bearing unit
5	6	1	5	4	31	6	M5x0,5	7	-	-	-	EK5
6	8	1/2/2,5	6	4	38	8	M6x0,75	8	-	-	-	EK6
8	10	2/4	8	6	44	9	M8x1	10				EK8
0	12	2/4/5	0	0	44	9	IVIOX I	10	-	-	-	ENO
10	14	2	10	8	54	15	M10x1	16	2	1,2	11	BK10
10	16	4/5	10	0	54	15	WITUXT	10	2	1,2	11	DRTU
12	16	10/ 16	12	10	54	15	M12x1	14	3	1,8	12	BK12
12	20	4/5	12	10	54	10	IVITZAT	14	5	1,0	12	DITIZ
15	20	10/20	15	12	60	20	M15x1	15	4	2,5	16	BK15
17	25	5/ 10/ 25	17	15	76	23	M17x1	20	5	3	20	BK17
20	32	10	20	17	78	25	M20x1	15	5	3	21	BK20
25	32	4 / 5 / 20/ 32	25	20	95	30	M25x1,5	18	6	3,5	25	BK25
30	40	5 /10 / 40	30	25	110	38	M30x1,5	25	8	4	32	BK30
35	50	10 /20	35	30	128	45	M35x1,5	28	8	4	40	BK35
40	50	50	40	35	148	50	M40x1,5	35	10	5	45	BK40


Model F3/F4

	Spindle		ØA	ØВ					Ţ	yp F4 (Key	/)	Recom-
Unit	Nominal Diameter	Pitch	h6	h7	Μ	E	S	F	G	Р	Т	mended bearing unit
10	16	4/5	10	8	M10x1	50	12	20	-	-	-	PBUF10
12	16	10/16	12	10	M12x1	60	12	25	3	20	1.8	PBUF12
12	20	4/5	12	10	IVIIZAI	00	12	20	0	20	1.0	T DOL 12
15	20	10/20	15	12	M15x1	65	17	25	4	20	2.5	PBUF15
17	25	5/10/25	17	15	M17x1	70	19	28	5	22	3	PBUF17
20	32	10	20	15	M20x1	75	19	30	6	25	3.5	PBUF20
25	32	4/5/20/32	25	22	M25x1,5	76	21	30	6	25	3.5	PBUF25
30	40	5/10/40	30	25	M30x1,5	86	23	38	8	32	4	PBUF30
35	50	10/20	35	30	M35x1,5	110	28	50	8	36	4	PBUF35
40	50	50	40	36	M40x1,5	132	28	60	10	40	5	PBUF40
	63	10/20										
50	80	10/20	50	40	M50x1,5	154	32	70	12	50	5	PBUF50

Machining for floating bearings

Model S1

Model	Nominal diameter of the spindle	Pitch	A	E	В	G	F	Recommended bearing unit
10	14	2	10	11	9,6	1,15	9,15	BF10
10	16	4/5	10	11	3,0	1,10	3,13	DITO
12	16	10/ 16	12	11	9,6	1,15	9,15	BF12
12	20	4/5	12		3,0	1,10	3,13	DITZ
15	20	10/20	15	13	14,3	1,15	10,15	BF15
17	25	5/ 10/ 25	17	16	16,2	1,15	13,15	BF17, PBUL17
20	32	10	20	16	19	1,35	13,35	BF20
25	32	4 / 5 / 20/ 32	25	20	23,9	1,35	16,35	BF25, PBUL25
30	40	5 /10 / 40	30	21	28,6	1,75	17,75	BF30, PBUL30
35	50	10 /20	35	22	33	1,75	18,75	BF35
40	50	50	40	24	38	1,95	19,95	BF40

Model S2

Model	Nominal diameter of the spindle	Pitch	ØA j6	Ø	iΒ	E	F	G H13	Recom- mended bearing unit
10	16	4/5	10	9,6	h10	12	10,1	1,1	PBUL10
12	16 20	10/ 16 4 / 5	12	11,5	h11	13	11,1	1,1	PBUL12
15	20	10/20	15	14,3	h11	14	12,1	1,1	PBUL15
17	25	5/ 10/ 25			S1 (use)			PBUL17
20	32	10	20	19	h11	18	15,3	1,3	PBUL20
25	32	4 / 5 / 20/ 32			S1 (use)			PBUL25
30	40	5 /10 / 40			S1 (use)			PBUL30
35	50	10 /20	35	33	h12	22	18,6	1,6	PBUL35
40	50	50	40	37,5	h12	28	24,85	1,85	PBUL40
50	63 80	10/ 20 10/ 20	50	47	h12	27	29,15	2,15	PBUL50

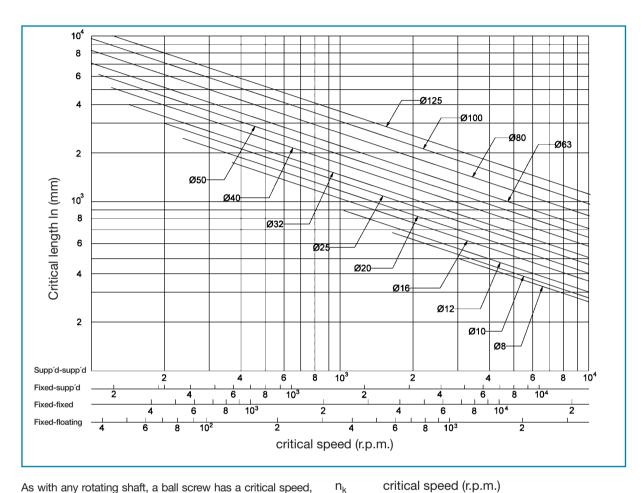
al clearance and preloading

Through the preloading the axial clearance of the ball screw is removed and the stiffness is increased. In addition the positional accuracy is also improved.

The preloading of the single nut is achieved by installing balls of selected dimensions.

The preloading of the double nut is created by tensioning two nuts against each other.

Combination of axial clearance and preloading


Symbol	0	1	2	3	4
Axial clearance	yes	no	no	no	no
Preloading	no	no	light	medium	high
% of dynamic load rating	-	-	~3	~5	~7

	CI	SK	SC	DC	SU	DU	SE
0	٠	•	•	•	•	•	•
1	٠	•	•	•	•	•	•
2	•		•	•	•	•	
3				•		•	
4				•		•	

Combination of axial clearance 0

Spindle diameter [mm]	rolled ball screw axial clearance [mm]
04-14	0,05
15-40	0,08
50-100	0,12

Critical speed of ball screws L

As with any rotating shaft, a ball screw has a critical speed, which is a harmonic vibration. Running the ballscrew in the critical speed area consistently will shorten its operational life, and could affect the performance of a machine as the vibration passes through the machine chassis. For example: On a machine tool it could cause flaws in the surface finish as ball screw reaches its critical speed, as the vibration is transmitted to other parts of the machine. The critical speed is a function of the diameter and length of the ball screw shaft, and the mounting configuration. The axial clearance of the nut has no influence on the critical speed n_k.

The operating speed should be kept at or below 80% of the critical speed. The formula below, for calculating the admissible speed n_{kzyl} takes account of this 0.8 safety factor.

$$n_{kzyl} = \alpha * \frac{60 * \lambda^2}{2 * \pi * l_k^2} \sqrt{\frac{E * I * g}{\gamma * A}} = f * \frac{d_2}{l_k^2} * 10^7$$
(1/min)

Centre diameter of the spindle, mm

fixed-floating λ=1.875

n_{kzyl}

α

Е

Т

 d_2

γ

g

A

Ιk

f

The maximum permissible speed of the ball screw is limited by the DN value in addition to the critical speed. For the nuts SC/DC

For the nuts CI, SK, SU/DU, SE

 d_0

 $d_0 * n_{kzyl} \le 120.000$ $d_0 * n_{kzyl} \le 90.000$

supported-supported

fixed-supported

fixed-fixed

permissible operating speed (r.p.m.)

geometric moment of inertia (mm²)

diameter at the ball screw root (mm)

cross section of the ball screw (mm²)

correction factor due to mounting

elasticity modulus (E=2.06x105 N/mm²)

specific material density (7,6x10⁻⁵ N/mm³)

earth's gravitational constant (9,8x10³ mm/s²)

unsupported length between the two housings

λ=3,14

λ=3,927

λ=4,730

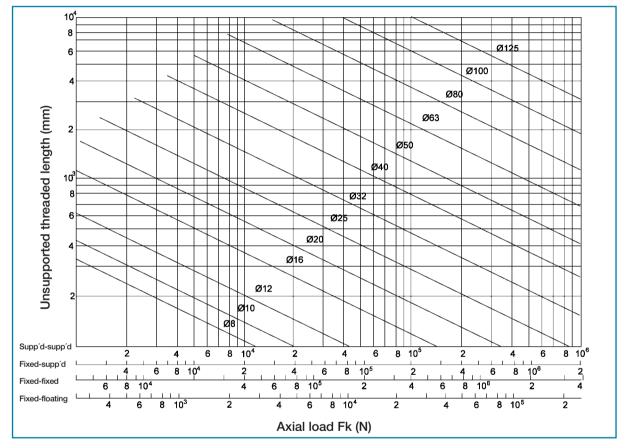
f=9,7

f=15,1

f=21,9

f=3,4

safety factor (=0.8)


Please contact our application engineers if the required speed exceeds the DN value, or the ball screw is used for higher speeds.

(31)

ermissible axial load for e screw (buckling)

Similar to any shaft, ball screws can only withstand a limited axial load. Any stress greater than the maximum defined values can lead to failure of the screw. The permissible axial compression is a function of the length, diameter and the type of mounting of the screw. The maximum axial compression load should be 50% or less of the theoretical permissible load. The calculation made using the formula below takes this safety factor into account.

- F_{kzyl} maximum permissible working axial load (N)
- α safety factor (=0,5)
- E modulus of elasticity

(E = 2,06 * 10⁵ N/mm²)

I geometric moment of inertia I = $\frac{\pi}{64} * d_2 \text{ (mm}^4\text{)}$

d₂ diameter at the ball screw root (mm)

 ${\rm I}_{\rm K}$ ~ unsupported length between the two housings (mm)

m, N factor linked to the

32

m=5,1	N=1
m=10,2	N=2
m=20,3	N=4
m=1,3	N=0,25
	m=10,2 m=20,3

$$F_{kzyl} = \alpha * \frac{N * \pi^2 * E}{I_k} = m * \frac{d_2^4}{I_k} * 10^3 (N)$$

ounting the nut on the screw

In case of separate delivery of ball screws and ball nuts, qualified personnel must carry out the assembly of the ball screws. Ball nuts should be mounted only with the help of a fitting sleeve. The fitting sleeve delivered with the nut unit can be used. The start of the thread of the spindle must be aligned, so that the wiper and the internal single parts of the nut unit are not damaged.

As standard SNR ball screws are delivered with an installed nut unit. The nut unit and spindle should not be dismantled (especially applicable for a preloaded nut). If this is unavoidable, please contact our application engineers.

Proceed with the mounting as follows:

Remove the rubber washer from one side of the sleeve. Push on the nut with the sleeve on the end of the screw. Press the sleeve against the start of the screw thread.

Screw the nut on to the thread, using a slight axial pressure. Then screw the nut on for its entire length.

Remove the mounting sleeve only when the nut is completely threaded on to the screw. Lock the nut to prevent any unscrewing (using a rubber washer or fixing the sleeve axially).

What do I do when...

Balls escape while threading on the nut?

- Pick up the balls (the nut is only compatible with the original balls). The load capacity is then ensured, even if two or three balls are missing.
- 2. Carefully clean all the components.
- 3. Use the sleeve as a mounting jig.
- 4. Replace the balls.
- 5. Start with the lowest circuit. Insert the balls into the nut circuit, the sleeve prevents the balls from falling inside.

Note:

Ground ball screws, with a single or double nut are always delivered with the nut assembly mounted, similarly to rolled double nut screws.

Please contact us if you absolutely must dismantle a nut assembly.

Important: Use only the original balls!

Important:

Do not place the balls in the empty circuit located between the two deflectors!

Operating and maintenance information for the ball screws

Operating conditions

In addition to the load rating, the maximum speed, critical bending speed and the permissible buckling force should also be considered. Ball screws are conceptualised as a drive element for creating axial feed force. Radial forces and torques that have an impact on the nut, lead to the reduction of durability. When using a ball screw the ambient temperature shall not exceed 80°C.

Assembly

During assembly, parallel alignment of the guiding elements should be ensured. Special care must be taken to achieve a concentric assembly of the nut on the spindle. Here attention should be paid to the tolerance relationship between the guiding elements and layout as well as the bearing units and nut housings. By providing alignment options to the nut or to the bearing, good accuracy with lower cost can be realised.

Lubrication

For maintaining the performance of a ball screw, it must be lubricated adequately. Similar lubricants that are used for rolling bearings should be used. Lubricants containing MoS_2 or graphite should not be used. The selection of the lubricant and the type of supply can be adjusted to match the lubrication of the other components of the machine. A one off lifetime lubrication of the ball screw is not adequate based on experience, as the spindle constantly discharges small amounts of lubricant from the nut.

SNR – ball screws are supplied with the conserving oil "Contraktor Fluid H1". "Contraktor Fluid H1" is compatible with the SNR standard lubricant "SNR LUB Heavy Duty".

The lubrication period is dependent on many factors such as:

- Load
- Speed
- Motion sequence
- Temperature

The following factors reduce the lubrication interval:

- Greater load
- High speed
- · Short stroke (stroke is smaller than three times the length of the nut)
- Lower ageing resistance of the lubricant

Grease lubrication

For operation under normal conditions, grease SNR Heavy Duty is used. Specific requirements under certain environmental conditions require the use of a suitable grease. In the food industry and clean room there are special requirement for the lubricant with regard to emission and compatibility. Basically the compatibility of the lubricants against each other should be checked. In case of special ambient conditions we will gladly assist you. Depending on the area of application the following lubricants can be used:

Name	Oil type, consistency	NLGI- class DIN 51818	Walk penetration DIN ISO 2137 at 25°C [0,1 mm]	Ground oil viscosity DIN51562 at 40°C [mm²/s]	Density [kg/m ³]	Temperature range [°C]	Properties	Field of application
			[0,11111]	[[1][1]/5]	[Kg/III-]	[0]		
SNR LUB Heavy Duty	Paraffin mineral oil / Lithium – Special - Soap	2	285	ca. 105	890	-30+110	Lower friction, smooth running	General engineering
SNR LUB GV+	Synthetic KW oil / ester oil / Lithium – Special - Soap	2	265295	24	900	-50+120	Very good adhesion, very good water resistance	High speeds
SNR LUB HIGH TEMP	Synthetic KW oil / mineral oil / polyurea	2	265295	160	900	-40+160	High temperature resistance, good corrosion protection, high oxidation resistance	High temperature range
SNR LUB FOOD	Paraffin mineral oil / aluminium complex soap	2	265295	ca. 240	920	-30+110	Good corrosion protection, very good adhesion, high water resistance, NSF H1 registered*	Food industry
Microlub GL261	Mineral oil / Lithium – Special - Soap	1	310340	280	890	-30+140	Good wear protec- tion, special pressure resistance additive against tribo corrosion	general engineering high load short-stroke applications, vibrations
Klübersynth BEM34-32	Synthetic CW - oil / special - calcium soap	2	265295	ca. 30	890	-30+140	Particularly pressure resistant, good wear protection, good ageing resistance low starting torque	Clean-room applications
Klübersynth UH1 14-151	Synthetic CW oil/ester oil / aluminium complex soap	1	310340	ca. 150	920	-45+120	Good corrosion pro- tection, good ageing resistance, high water resistance, NSF H1 registered*	Pharmaceutical industry Food industry

* This grease is registered as H1 product: it has been developed for occasional, technically unavoidable contact with foodstuff. Experiences have shown that the grease can also be used for the corresponding applications in the pharmaceutical and cosmetic industry, on the conditions listed in the product information. However, there are no specific test results, for instance, on the biocompatibility, as may be required under certain circumstances in the pharmaceutical area. Therefore, before it is used in this area by equipment manufacturers and distributors, corresponding risk analyses must be performed. If necessary, measures to avoid health hazard and injuries must be taken. Source: Klüber Lubrication)

36

At higher speeds (speed parameter DN > 50,000) the quality K1K or KP1K should be selected. Speed parameters under 2,000 require a grease of the consistency class 3 (K3K or KP3K DIN 51825). The required lubrication period is based on the ambient conditions. In general re-lubrication should be carried out every 200-600 operating hours. The following is applicable as a reference value for the lubricant quantity: Per cm spindle diameter \geq 1 cm3 grease for each nut. Only greases of same soap base should be used for lubrication.

Oil lubrication

As a rule, oil lubrication is used in conjunction with centralised lubrication equipment. The advantage of centralised automatic oil lubrication is a continuous lubricant supply to all the lubrication points. Lubricant oils ensure a very good dissipation of friction heat. In contrast there are higher design and assembly requirements for the lubrication lines. Depending on the area of application the following lubricant oils can be used:

Name	Type of lubricant	Kinematic viscosity DIN51562 at 40°C	Density	Temperature range	Properties	Field of application
		[mm²/s]	[g/cm ³]	[°C]		
Klüberoil GEM 1-100N	Mineral oil	100	880	-5+100	Good corrosion and wear protection	General engineering
Klüberoil 4 UH1-68N	Polyalphaolefin	680	860	-25+120	good ageing and wear protection	Food industry
					NSF H1 registered*	Pharmaceutical industry

* This grease is registered as H1 product: it has been developed for occasional, technically unavoidable contact with foodstuff. Experiences have shown that the grease can also be used for the corresponding applications in the pharmaceutical and cosmetic industry, on the conditions listed in the product information. However, there are no specific test results, for instance, on the biocompatibility, as may be required under certain circumstances in the pharmaceutical area. Therefore, before it is used in this area by equipment manufacturers and distributors, corresponding risk analyses must be performed. If necessary, measures to avoid health hazard and injuries must be taken. Source: Klüber Lubrication)

At higher speeds (speed parameter DN > 50,000) oils of the viscosity class ISO VG 46-22 should be used. For speed parameters under 2,000 the viscosity ISO VG 150-460 should be used. If the load is above 10% of the dynamic load rating, an oil with additives is recommended for increasing the load capacity (class CLP, DIN 51517 Part 3). With oil bath lubrication the spindle must be 0.5 to 1 mm above the oil level. The oil supply with re-circulation lubrication should be 3 cm³/h for each ball circulation.

- (1) Product BSC Screw + Nut assembly BSH Ball screw
- BNU Nut alone
- (2) Nominal diameter (mm)

(3) Pitch (mm)

(4) Direction of pitch

- right left
- L

(5) Type of nut Cl Single

- SK
- SE
- Single cylindrical nut (Page 7) Single flanged miniature nut (Page 6) Single flanged nut (wide pitch) (Page 12) Single flanged compact nut to DIN 69051 (Page 8) Double flanged compact nut to DIN 69051 (Page 9) Single flanged nut to DIN 69051 (Page 10) Double flanged nut to DIN 69051 (Page 11) Single threaded nut (Page 13) ŠС
- ĎČ
- SU
- DU
- Single threaded nut (Page 13) SH

For the coding of screws alone:

- Screw for compact series DIN nut 01
- Screw for special nut types 00

(6) Number of circuits

(7) Type of flange

- DIN 69051 section 5 form A (round) DIN 69051 section 5 form B DIN 69051 section 5 form C
- B C
- 7 Cylindrical nut

(8) Precision class (Page 22) T0, T1, T2, T3, T5, T7 (in stock), T10

(9) Model

- ground G
- Ř rolled

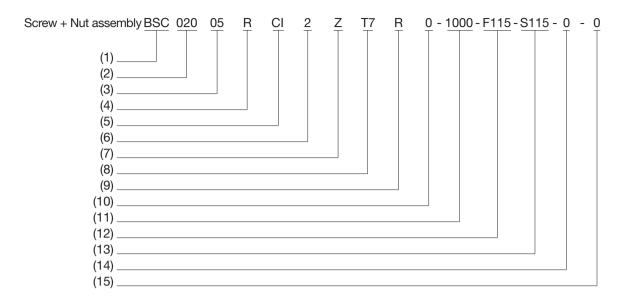
(10) Preload types (Page 26) 0 Standard axial clearance

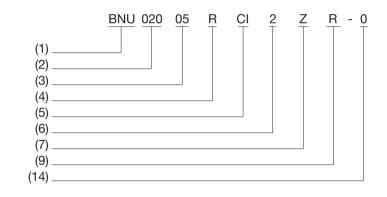
- 1
- No axial clearance
- 2 Light preload 3 Medium preload
- High preload 4

(11) Total length (mm)

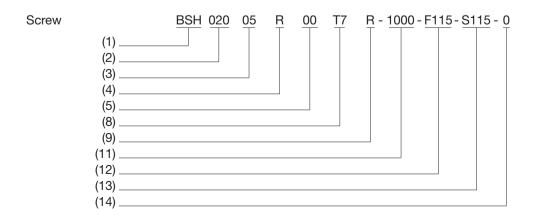
(12) Right side screw end (Pages 19-20)

- F, S 1, 2 Form F, S (X depending on customer drawing, 0 with no end machining)
- Model
- 6...60 Diameter of the bearing seat


(13) Left side screw end, see right side screw end


(14) Lubrication

- Ό Standard nut greasing
- Anti-corrosion greasing 1
- 2 Greasing to customer instructions


(15) Special

- 0 None
 - Taking account of drive torque measurement 1
 - ż Taking account of pitch error

Nut

Company							
Address		Conta	Contact				
Position		Teleph	ione Fax	Fax			
Description of the app	olication						
Isolated need	No. of pieces		New construction				
Production need	Required delivery	Weeks	Technical improvement				
	Pieces per year		Cost reduction / Current prid	ce €			
	Delivery of pie	ces required in	Weeks				
Application parameter	ers						
Type of mounting:	Horizontal	Vertical	Usable stroke:				
Maximum usable load	d:	kg	Additional axial load:				
Maximum movement	speed:	m/s	Maximum acceleration:				
Positioning accuracy:		mm	Reproducibility:	mm			
Maximum inversion c	learance:	mm	Cycle time:	sec			
Required working life	strokes or	hours					
Ambient conditions o	f use:		Special circumstances:				
Dimensions and feat	ures, if existing applic	ation					
Flange nut:			Maximum dimensions of the nut:				
Cylindrical nut			Nominal screw diameter:	mm			
DIN nut			Pitch:	mm			
			Total length:	mm			
Housings							
fixed supported supp	corted floating	With machining of the ends to drawing no. Machining of the ends for use with SNR housings					
fixed fixed supp	orted fixed	[No end machining				
. I . I l	, L.						

The consultation of SNR WÄLZLAGER GMBH is exclusive for the function of the ball screws. As a supplier of a component SNR accepts no liability for the function, operation or performance for the machine, system or assembly to which the ball screw is mounted. This responsibility lies with the machine designer, manufacturer, operator or other relevant parties.

Siège social : NTN-SNR ROULEMENTS - Rue des Usines - 74000 Annecy - France - RCS Annecy B 325821072 - Code NAF 291H - Code NACE 29.1

www.ntn-snr.com